康托尔集的定义

康托尔集的定义 康托尔集的构造与性质?

康托尔集的构造与性质?

康托尔集的构造与性质?

在数学中,康托尔集,由德国数学家格奥尔格·康托尔在1883年引入(但由亨利·约翰·斯蒂芬·史密斯在1875年发现),是位于一条线段上的一些点的集合,具有许多显著和深刻的性质。通过考虑这个集合,康托尔和其他数学家奠定了现代点集拓扑学的基础。虽然康托尔自己用一种一般、抽象的方法定义了这个集合,但是最常见的构造是康托尔三分点集,由去掉一条线段的中间三分之一得出。康托尔自己只附带介绍了三分点集的构造,作为一个更加一般的想法——一个无处稠密的完备集的例子。

康托集是什么,实数性质还有那些?

康托集是指著名的康托尔完全集,属于高等数学 是这样构成的:给出闭区间[0,1],把它三等分,第一次删去中间的那个子集(1/3,2/3),剩下[0,1/3]和[2/3,1],再把这两个闭区间三等分,第二次删去中间的子集(1/9,2/9)、(7/9,8/9),剩下[0,1/9]、[2/9,1/3]、[2/3,7/9]、[8/9,1],如此继续下去直至无穷,那么最终剩下的集合的测度可用下式计算: 1-(1/3 2/9 4/27 ……)=1-(1/3)/(1-2/3)=0 康托尔由此得出,剩下的集合是测度为0的连续基数集,这就是康托尔完全集。

有理数和无理数统称为实数,实数有下列重要性质: 1.有理数都可以写成有限小数或循环小数的形式,都可以表示成分数的形式;无理数是无限不循环小数,不能写成分数的形式,这里、是互质的整数,且. 2.有理数对加、减、乘、除是封闭的,即任何两个有理数的和、差、积、商还是有理数;无理数对四则运算不具有封闭性,即两个无理数的和、差、积、商不一定是无理数.

什么是康托尔三分集?

将闭区间[0,1],去掉中间的1/3,留下[0,1/3]和[2/3,1],再分别去掉这两段中间的1/3,变成等长的4段……重复这个过程无穷多步,就得到了康托尔三分集。

康托尔集有无穷多个点,占据[0,1]区间长度却为0,是一个分形,具有非整数维数、自相似性等分形的特点。